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Abstract. How can we ensure that an information dissemination cam-
paign reaches every corner of society and also achieves high overall reach?
The problem of maximizing the spread of influence over a social network
has commonly been considered with an aggregate objective. Less atten-
tion has been paid to achieving equality of opportunity, reducing infor-
mation barriers, and ensuring that everyone in the network has a fair
chance to be reached. To that end, the fairness objective aims to maxi-
mize the minimum probability of reaching an individual. To address this
inapproximable problem, past research has proposed heuristics, which,
however, perform less well when the promotion budget is low and achieve
fairness at the expense of overall welfare. In this paper, we propose novel
reachability-aware algorithms for the fairness-oriented IM problem. Our
experimental study shows that our algorithms outperform past work in
challenging real-world problem instances by up to a factor of 4 in terms
of the fairness objective and strike a balance between fairness and total
welfare, even while no solution is universally superior across data, influ-
ence probability models, and propagation models.

1 Introduction

Information dissemination plays a critical role in societal welfare, as in illness pre-
vention [27], welfare distribution [2], and the dissemination of scholarship oppor-
tunities [24]. In that regard, the task of InfluenceMaximization (IM) seeks to iden-
tify influential initiators within a budget that maximize influence spread, a form
of utility, in a network [5,6,14,16,21,25,26]. However, the maximization of spread
is unavoidably biased toward individuals who are easier to reach and already
well-informed, hence exacerbates information asymmetries among individuals or
groups, which reinforce cultural divides and class stratification [11,12,15]. For
instance, on job platforms, those with more connections may find better opportu-
nities [8]. Similarly, marginalized groups may miss crucial information about HIV
prevention [27]. When allocating scholarships, organizations aim to benefit deserv-
ing individuals. However, some deserving scholars may lack access to information
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channels that would apprise them of the availability of scholarship opportunities.
Such asymmetries introduce a unique form of inequality. Therefore, ensuring fair-
ness [10,17] by bridging information access gaps becomes crucial in promoting an
equitable and cohesive society [1,7,8,13,22,27,29].

Most works addressing this information gap problem aim at fairness with
respect to predefined groups [7,9,13,22,23,27–29]. However, the clustering of
users into groups avoids part of the problem, as some of them may still face
disregard within a group. In this paper, we focus on the question of Fair Influ-
ence Maximization (FairIM), aiming at opportunity equity at the individual
node level. One way to address individual fairness is the ex-ante method [1],
which considers how fair the allocation is in advance. Contrariwise, we provide
a deterministic strategy for choosing seed nodes aiming at ex-post fairness, i.e.,
considering how fair the measurable outcome is in retrospect, after the allocation.
Fish et al. [8] proposed a heuristic to settle individual fairness, yet did not con-
sider global welfare. We aim to ensure that all participants get an equitably high
chance to receive some information, announcement, or call, while still gaining
high overall information reach, given a limited budget of diffusion initiators.

The FairIM problem raises several challenges: First, the problem is NP-hard
and hard to approximate to within any constant factor unless P = NP [8]. Sec-
ond, while fairness is desirable, the total expected reach should not be severely
compromised for the sake of fairness. Third, under a limited budget, it becomes
challenging to even ensure that the minimum probability of influence rises above
zero, particularly in real-world settings where the budget is often low. For exam-
ple, an agency that seeks to select 1% of potential influencers in a network can
face a challenge in ensuring everyone has a fair chance to be reached. Last,
its objective function corresponds to Robust Submodular Observation Selection
(RSOS) [18], hence a conventional submodularity-based approximation guaran-
tee does not apply. Thus, this problem calls for new approaches.

Our Contributions and a Road map. We delve into the problem of Fair
Influence Maximization (FairIM) and present a group of solutions aptly balance
fairness and global welfare under a budget.

– In Sect. 2, we define the FairIM problem and its MaxMin objective at the
individual level and state its hardness.

– In Sect. 3, we introduce our heuristic methods solving FairIM. Firstly, we
propose a greedy baseline. Secondly, we propose uplift, a reachability-aware
seed selection method that caters to both utility and fairness at low seed
budgets. In Sect. 3.2, we enhance uplift with a tie-breaking variant, uplift+,
and a local-search variant, upliftX. Thirdly, we propose super (Sect. 3.3),
a hybrid heuristic method that achieves benefits on both low-budget and
high-budget stages.

– In Sect. 4, we present a comprehensive experimental study demonstrating
that uplift and its variants strike a desirable balance between fairness and
global welfare. Remarkably, in challenging cases where the seed budget is low
and information propagation is weak, our solutions significantly outperform
myopic [8], reaching up to a factor of 4 when the budget is 10% of the nodes.
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Further, our baseline greedy solution performs as well as saturate [18], which
has a strong theoretical approximation guarantee, and is faster too. In this
study, we conduct large-scale experiments on data from four diverse domains
and two synthetic datasets under varying edge distribution, encompassing
up to 81K entries, well beyond previous works’ experimental studies that
typically reach sizes of 10K [1,7,8].

2 Problem Statement

In this section, we introduce basic notions and spread models, formally define
the problem of Fair Influence Maximization (FairIM), and analyze its hardness
(Table 1).

Table 1. Notations.

Symbol Description

G(V, E) Graph G consisting of a edge set v ∈ V and a node set e ∈ E

Gi Deterministic graph instance
d̄, d̂ Average degree and largest degree in G

θv Active threshold of node v in LT model
pv,u Probability on edge (v, u)

S Candidate seed set
x x ∈ X , one possible world in universe X
IS(v) The probability for node v under seed S

σ(S) Expected number of nodes reachable from S

σx(S) Expected number of nodes reachable from S in possible world x

I[v] Expectation of v being active, E[IS(v)]

I[V ] Vector consisting of I(v), v ∈ V

Δ(v|S) Influence increment when adding v to S.

Definition 1. (Global Welfare). Given a social graph G(V,E) of directed
edges annotated with probability values p reflecting the strength of connections,
and an integer k, the problem of Global Welfare, seeks a set S of up to k seed
nodes that maximizes a spread function σ(S) =

∑
v∈V E[IS(v)].

We denote the probability that node v ∈ V is influenced from seed set S
as IS(v). Standard concentration bounds show that this probability can be
estimated accurately with relatively few repetitions of a diffusion process [16].
Given t deterministic instances {Gi}, 1 ≤ i ≤ t of probabilistic graph G, we

can estimate IS(v) as
∑t

i=1 I
Gi
S (v)

t , where IGi

S (v) is an indicator function denot-
ing whether an influence cascade emanating from seed set S by a given spread
model on deterministic graph instance Gi reaches node v. We may compute the
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influence spread function σ(S) =
∑

v∈V E[IS(v)] by Monte Carlo simulations,
estimating spread of set of nodes S over t instances [16].

We focus on two popular spread model, the Independent Cascade (IC) and
Linear Threshold model (LT) models [16], both arising from mathematical soci-
ology. By both models, the spread function σ(S) is monotonic and submodular,
yet evaluating σ (S) is #P-hard [3,4].

The Independent Cascade Model (IC) introduces an influence probabil-
ity pu,v ∈ [0, 1] for each edge eu,v, representing the likelihood that v is suc-
cessfully activated by u. When u becomes active at a time step t, it has a chance
to independently activate its inactive neighbors v at time t + 1 with pu,v.

By the Linear Threshold Model (LT), the sum of incoming edge weights at any
node is at most 1, and every node v chooses an activation threshold θv ∈ [0, 1]
uniformly at random. The diffusion operates in discrete time steps. In step t,
nodes that were active in step t − 1 remain active, and any node v becomes
active if the sum of edge weights from its active incoming neighbors is at least θv;
equivalently, it chooses at most one incoming edge proportionally to its weight
and becomes active if the corresponding neighbor is active [16].

2.1 Fairness in Influence Maximization

We may optimize a welfare function to improve access to information in the
aggregate. However, beyond and in addition to global welfare, we are concerned
about individuals who lag behind and become disadvantaged. We define the
problem of MaxMin Fairness, which caters to those individuals.

Definition 2. (MaxMin Fairness). The MaxMin Fairness problem in graph
G(V,E) seeks a set of seed nodes S that maximizes minv∈V E[IS(v)], with the
constraint |S| ≤ k, where smaller values of k are preferred.

Linear Threshold
Independent Cascade

Fig. 1. Example graph and possible worlds.

We aim to lift up the welfare of the least advantaged individual. To that end,
an algorithm should focus on reducing the number of disadvantaged individuals,
rather than merely reducing some influence gap between arbitrary individuals.
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This orientation is well aligned with our goal, as the decrease of such individuals
eventually improves fairness. For instance, consider we care about individual
nodes a, b, x, where node a is easily reached, and the gap between a and b is
small (IS(a) ≈ IS(b)), but reaching x is challenging due to its disadvantaged
status. One solution might reduce the gap between a and b to equalize their
influence (IS(a) = IS(b)); however, that would not address the need to raise the
influence on x. Therefore, an algorithm should focus on decreasing the number
of disadvantaged individuals to eventually eliminate them.

Example. Let minv∈V IS(v) be function f(S). Consider a directed graph of
three nodes {a, b, x} as in Fig. 1, with A = {b}, B = {a, b} as seed sets.
Figure 1 shows the possible worlds of different activated edges. By the IC model,
we set the probability for each edge to 1/2, which makes each of the eight
worlds equally probable with a probability of 1/8. The probabilities that {a, b, x}
receive influence are {0, 1, 1/2} under seed set A and {1, 1, 3/4} under seed set B,
hence f(A) = min{0, 1, 1/2} = 0 and f(B) = min{1, 1, 3/4} = 3/4. Similarly,
by the LT model, each node picks at most one incoming edge, hence there
are six possible worlds. We set the probability of edge (a, b) to 1/2 and that
of the other two edges to 1/3, rendering all six worlds equally probable with
probability 1/6. Following the same configuration as for the IC model above,
f(A) = min{0, 1, 1/3} = 0 and f(B) = min{1, 1, 2/3} = 2/3. Further, it holds
that f(A ∪ x) − f(A) < f(B ∪ x) − f(B) in both models, hence the MaxMin
objective is non-submodular1.

Table 2. Fairness notions for information dissemination.

Method Objective Objective Function Indiv.

Frank-Wolfe [27] MaxMin g max
S⊆V,|S|≤k

min
gi

σgi
(S)

|gi| �

Diversity max
S⊆V,|S|≤k

{
σ(S), if ∀i σgi(S) ≥ σgi(ki)

0, otherwise
�

Mixed Integer
Programming
(MIP) [7]

Equality |S∩Vgi
|

k
≈ |gi|

|V | �

Equity σgi
(S)

σ(S)
≈ |gi|

|V | �

MaxMin g max
S⊆V,|S|≤k

min
gi

σgi
(S)

|gi| �

Diversity σgi(S) ≥ OPTg �

Greedy [22] MaxMin g max
S⊆V,|S|≤k

min
gi

|gi|σgi(S) �

Saturate [29] MaxAvg g max
S⊆V,|S|≤k

min
gi

1
|gi|σgi(S) �

Random [1] Ex-ante max
S⊆V

min
gi

σgi(S) �

myopic [8] MaxMin v max
S⊆V,|S|≤k

min
v⊆V

E(IS(v)) �

uplift MaxMin v max
S⊆V,|S|≤k

max min
v⊆V

E(IS(v)) �

1 A set function f : 2V → R is submodular iff ∀x ∈ V \A ⊆ B ⊆ V , f(A∪x)−f(A) ≥
f(B ∪ x) − f(B).
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Table 2 presents some representative notions of fairness and methods used
in existing works on FairIM. Such works mainly focus on group-oriented fair-
ness [7,13,22,27,29]. A group or community gi can receive a partial budget
of ki < k seed nodes, while σgi

(S) denotes the expected spread by seed S within
group gi. Individual fairness is a special case of group fairness with |gi| = |V |.
However, group fairness seed selection strategies rely on a budget allocated to
each group [7,27], which cannot transfer into individual fairness under a low
budget. Therefore, it is imperative to develop individual fairness-oriented algo-
rithms, especially for low budgets.

2.2 Hardness

By reduction from the Set Cover problem, FairIM is NP-hard [8]. Further,
when the probability of transmission among nodes is p <

√
5−1
2 , the MaxMin

objective cannot be approximated better than O(p) [8, Theorem 4.1]. Since Set
Cover is O(ln n)-inapproximable, we can only approximate the optimal set of k
seeds using an additional O(ln n)-factor seed budget.

3 Achieving Influence Fairness

As FairIM is an inapproximable [8] robust Submodular Observation Selection
Problem [18], we address it heuristically. We seek a seed set S that maxi-
mizes the minimum probability to influence a node: S = arg maxS⊆V,|S|<k

minv∈V E[IS(v)]. In Sect. 3.1 we describe a greedy baseline. In Sect. 3.2 we
present our novel uplift algorithm and its variants. Additionally, we propose
the super framework in Sect. 3.3.

Algorithm 1: Greedy
1 Function Greedy(G, k, t, ε):
2 S = ∅ // initialize S as empty
3 while S == ∅ or |S| ≤ k do
4 pmin = 0, count = +∞ // initialize temporary minimum and counter
5 for v ∈ S \ V do
6 I[V ] = MC(G, S ∪ {v}, t)
7 ξ = minv∈V I[v] // minimum node influence probability
8 T = {u ∈ V | I[u] ∈ [ξ, ξ + ε]}, η = |T |
9 if pmin == ξ and η ≤ count then

10 vnode = v, count = η // for nodes yielding same minimum influence
probability, choose one with smallest set size

11 if pmin > ξ then
12 vnode = v, pmin = ξ, count = η

13 S = S ∪ {vnode}
14 return S

15 Function MC(G, S, t):
16 for v ∈ S, C[v] = t; for v ∈ V \ S, C[v] = 0 // initialize each entry in C
17 for i ≤ t, i++ do
18 Q = Queue(S) while Q 
= ∅ do
19 v = Q.pop()
20 for u ∈ Nv do
21 p′

v,u ∼ U(0, 1) if p′
v,u < pv,u then

22 Q.push(u), C[u]++ // update counter if node activated
23 for v ∈ V , I[v] = C[v]/t
24 return I[V ] // return expectation vector
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3.1 Greedy Baseline

We present a greedy algorithm that selects the seed set S with a view towards
individual fairness. Algorithm 1 presents the pseudocode. The key variable is ξ,
standing for the minimum influence probability obtained when adding a candi-
date node v into seed set S; in each step, we add the candidate node yielding
with the highest ξ value. Still, some seed candidates may yield the same ξ value,
while the greedy selection does not consider how many influenced nodes have
the minimum influence probability ξ. The growth of ξ in the first few steps
will be small; at the start, we may get ξ = 0. To address this predicament, we
select, in each iteration (Lines 9–12), the candidate node, among those having
the same highest ξ value, that yields the least target nodes of minimum influence
probability ξ within a tolerance threshold ε, as defined in Line 8.

Influence Spread Simulation. The evaluation of influence spread, σ(S), is #P-
hard, hence so is the calculation of the expected influence received by a node v
under S, E(IS(v)) = I[v]. Still, Monte Carlo (MC) simulation returns a solution
with a constant bounded ratio of approximation [20]. Lines 14– 24 employ MC
simulation to count activations of v over t rounds by the IC model; we apply a
similar simulation for the LT model.

3.2 UpLift Approach.

While the greedy algorithm is efficacious, it neglects network reachability prop-
erties. Here, we propose our uplift algorithm, which is grounded in and attends
to the reachability of disadvantaged nodes. It works with a target node set Vt of
the most disadvantaged nodes and finds a reverse-reachable node set Vr, from
which we can reach nodes in Vt in one hop.

Algorithm 2: uplift
1 Function uplift (G, k, t, ε):
2 Vt = V, S = ∅
3 while |S| < k do

4 Cr = Reachability(G, Vt, S)

5 v = arg maxu∈V \S Cr [u]

// Tie-uplift applies Eq. (1)
6 I[V ] = MC(G, S ∪ {v}, t)

7 Vt ←{u∈V |I[u] ∈ [ξ, ξ+ε]}
8 return S

9 Function Reachability(G, Vt, S):
10 for v ∈ V \ S, C[v] = 0

11 for v ∈ Vt do

12 C[v] + + // update counters
13 for u ∈ Nv \ S // neighbors
14 do

15 C[u] + +

16 return C

Algorithm 3: super
1 Function super(G, k, t, ε):
2 S = {v

d̂
} // highest-degree node

3 I[V ] = MC(G, S, t)

4 while |S| < k do

5 vM = arg minvi∈V \S I[V ]

// node chosen by myopic
6 ξ = minv∈V I[v]

7 Vt = {u ∈ V | I[u] ∈ [ξ, ξ + ε]}
8 Cr = Reachability(G, Vt, S)

9 vR = arg maxvi∈V \S Cr(vi)

// node chosen by uplift

10 if Δ(vM |S) ≥ Δ(vR|S) then

11 v = vM

12 else v = vR

13 I[V ] = MC(G, S ∪ {v}, t)

14 return S

Naïve UpLift. Algorithm 2 illustrates uplift. In each iteration, we identify
the set Vt of target nodes having influence probability within a small tolerance
threshold ε of the minimum (Line 7). To cater to these disadvantaged nodes
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(initially, all nodes in V ), we add to the seed set S the candidate seed node v
that reaches the most target nodes Vr[v], v ∈ V , as in Line 5.

For each target node vt ∈ Vt, we increase the counter of their one-hop incom-
ing neighbors, as function Reachability in Lines 8–16 shows, hence count the
appearances of each node vr as a neighbor of a target node vt (Line 15).

community

, target nodes with

mininal influence

, incoming neighbors

of

Fig. 2. Diffusion from Vr to Vt in uplift

Figure 2 shows an example with two disadvantaged nodes, vt1 and vt2 ∈ Vt. If
we select a seed node in the community, then every node in it is easily activated.
However, nodes in Vt are hard to activate, as they are hard to reach by the
community. Target node vt1 has incoming edge e(vr1 , vt1) with neighbor vr1 ,
while vt2 has incoming neighbors vr1 , vr2 from edges e(vr1 , vt2), e(vr2 , vt2).
Thus vr1 and vr2 ∈ Vr are two reverse-reachable nodes for Vt. Among them,
only vr1 can reach both target nodes, hence we select that node as the next seed
node.

Tie UpLift, uplift+. Naïve uplift breaks ties in its selection randomly. To
improve upon it, we introduce a tie-breaking variant uplift+ (Algorithm 2,
Line 5). Among candidate seed nodes having equal reachability counts, we pick
the one of lowest own influence probability, as in Eq. (1). This way we advance
the most disadvantaged nodes in terms of both reaching them and turning them
to seeds.

arg min
w∈{v∈V \S|Vr[v]= max

u∈V \S
Vr[u]}

I(w) (1)

Local Search UpLift, upliftX. To further enhance the outcome of uplift, we
add a local search component to it, as Algorithm 4 illustrates. After we obtain
a k size set with uplift, we apply local refinements on the seed set to enhance
the influence function σ(·). We repeatedly remove the node yielding the smallest
influence loss and add a candidate node with the highest marginal gain Δ(v|S).
This swapping proceeds until the node we add is the same as the node removed,
whereupon the loop stops.

Algorithm 4: upliftX
1 Function upliftX (G, k, S, t, ε):
2 v = last seed selected by uplift
3 do
4 v′ = arg minu∈S Δ(u|S \ u), S = S \ v′ // node of smallest loss
5 v = arg maxu∈V \S Δ(u|S), S = S ∪ v // node of largest gain
6 while v′ 
= v
7 return S
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3.3 Super Approach

We now define a method that combines the benefits of the uplift methods with
those of the myopic solution [8], since, as we find, uplift performs well at chal-
lenging low budgets while myopic does well at larger budgets. As both uplift
and myopic invoke MC simulation by icExp in each round, we can as well select
a candidate seed by the myopic strategy, which simply picks the most disadvan-
taged node as seed. The super strategy, shown in Algorithm 3, chooses, among
these two approaches, the one that yields the best result regarding marginal gain
in terms of the MaxMin objective.

We choose the first node as the highest-degree node. Thereafter, we esti-
mate influence probabilities by icExp, and choose target nodes having the min-
imum probability within a threshold (Line 7). We identify the chosen candidate
by myopic in Line 5 and by uplift in Line 9, and compare their marginal
gains Δ(vM |S) = icExp(G,S ∪ {vM}, t) and Δ(vR|S) = icExp(G,S ∪ {vR}, t)
to pick the candidate with larger marginal gain among those two. To further
narrow down the search among reachable set, we expand the super algorithm
to a super* variant, which uses the same tie-breaking rule as in uplift+.

Complexity. While saturate [18] achieves bicriterion guarantees in
O(|V |log log |V |) time, greedy is the most time-consuming algorithm, having
quadratic complexity O(c · |V |2). The complexity of uplift is O(ktD̄|V |),
where D̄ is the average degree and t the number of MC iterations; uplift+
is faster as it narrows down the search space. Local search upliftX, on the
other hand, is sensitive to the seed selection by uplift. The time complexity
of super is the sum of myopic and uplift, hence O(ktD̄|V |), rendering it still
linear in |V |.

4 Experimental Study

Experiment Setting. Algorithms. We conduct a thorough experimental study
juxtaposing the following algorithms: random [1], which selects a random S, |S| =
k; myopic [8], which iteratively picks the vertex of smallest influence probability;
saturate [18], which uses a binary search procedure maintaining a search inter-
val and provides a fairness guarantee [29]; greedy (Algorithm 1); uplift (Algo-
rithm 2); uplift+, the tie-resolving variant of uplift; super (Algorithm 3),
which combines myopic [8] and uplift; super*, the tie-resolving variant of
super; and upliftX, which enhances upon uplift by local search (Algorithm 4).
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Table 3. Dataset details

(a) Dataset
Small Large
SPA [1] bitcoin [19] social network

spa0 spa10 alpha otc facebook [19] twitter [19]
|V | 500 500 3k 5k 4k 81k
|E| 1.6k 1.6k 24k 35k 88k 1.7M

Directed � � � � � �

D̄ 6.7 6.6 7.5 7.3 43.69 43.49
maximal d 47 41 510 795 1045 3758

(b) Edge Distribution
pv,u edge distribution
xp pv,u ∼ (1/8)

tp pv,u ∼ (1/4, 1/16, 1/64)

htp pv,u ∼ (1/2, 1/16, 1/64)

hp pv,u ∼ (1/2, 1/4, 1/8)

idp pv,u ∼ (1/din[u])

np pv,u ∼ U (0, 1)

Datasets. To ensure our methods are practical, we experiment using four real-
world networks [19] and the publicly available synthetic instances from the work
of Becker et al. [1]. Besides, we use graph data sets of size up to 81K, as Table 3a
shows, while previous works’ experimental studies have limited themselves to size
of up to 10K [1,7,8]. We tested those graphs on six edge influence probability
distributions, as in Table 3b: fixed (xp), trivalency (tp), half-trivalency (htp),
higher (hp), in-degree (idp), and uniform marked as np.

Implementation Details. We run experiments on a 14-core Intel Core i9 10940X
machine @3.3GHz with 256GB RAM. The C++ code2 is compiled by gcc 9.4
with o3 optimization.

Parameters. We run each trial 10 times, on both the IC and LT models. By
default, we use 10,000 Monte Carlo (MC) runs with spa data and 4,000 runs in
larger data sets; 1,000 MC runs during uplift reachable node selection, and 100
MC runs with saturate node selection phase on spa data. We use ε = 0.02 on
spa data and ε = 0.01 on larger data sets. We tune the budget range based on
the data; on smaller networks we set the maximum budget to 40% of the total
number of nodes, while on larger data we set the maximum budget to 0.1%–
3% of the nodes. Notably, previous works have set their budget parameters as
follows: in [8], the budget is up to 13% of the network with a default k = 100;
in [27], the default budget is set to k = 15 while a test considers a network
of 60–70 individual youth; in [1], the budget is up to 10% of the data and by
default k = 20.

2 https://anonymous.4open.science/r/fairness-2D9D/.

https://anonymous.4open.science/r/fairness-2D9D/
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Fig. 3. Fairness objective on spa0 and spa10 data, IC model, ε = 0.02.

Fig. 4. Fairness objective on spa0 and spa10 data, LT model, ε = 0.02.

Minimum Probability. Figure 3 shows our results on minimum influence prob-
ability with the IC model on spa data. With fixed probability distribution xp
(Figs. 3a, 3g), uplift variants outperform myopic until the budget gets too high
compared to the total size. upliftX always performs slightly better than uplift,
while uplift dominates other methods at low budget values. With higher edge
probabilities, the inflection point drops from around 40%|V | with xp to 30%|V |
with tp (Figs. 3b, 3h), to 20%|V | with htp (Figs. 3c, 3i). uplift maintains its
advantage when the budget is 4% of graph nodes with hp (Figs. 3d, 3j). With uni-
form probability distribution np (Figs. 3f, 3l) and 1/in-degree (idp) probability
(Fig. 3e, 3k), there are less significant gaps.

Figure 4 presents the corresponding results with the LT model and budget
from 20% to 30% of |V |. Notably, with the LT model, raising the disadvantaged
nodes is more difficult. In Figs. 4a–4b and 4g–4h, uplift dominates others in
the xp and the tp model, while upliftX performs best. As edge probability rises
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in Figs. 4c–4f and 4i–4l, myopic and super succeed to lift disadvantaged nodes
up, leading to the conclusion that there is no one-size-fits-all solution.

Fig. 5. Fairness objective on bitcoin alpha and otc data, IC model, ε = 0.01.

Figure 5 shows our results on the two bitcoin data sets, alpha and otc, with
the IC model and budget up to 5%|V | nodes. Here, our uplift-based algorithms
always dominate myopic in tp (Figs. 5a and 5c), while upliftX has a distinctive
advantage. The plot is similar with htp distribution (Figs. 5b and 5d), though
the inflection point comes at around 1.5%|V | vertex.

Fig. 6. Fairness objective on facebook and twitter data, IC model, ε = 0.01.

We also assess performance on an undirected graph, facebook, and a larger
dataset, twitter, with the IC model. Figure 6 shows our results, with budget up
to 2.4%|V | on facebook and 0.1%|V | on twitter. On facebook dataset, super
dominates uplift and myopic with tp distribution (Fig. 6a), while myopic out-
performs others with htp (Fig. 6b). No method is universally superior. On twitter,
myopic achieves lower minimal probability than others with tp (Fig. 6c). uplift
presents a rapid growth and reaches plateau within the first twenty seed nodes.
With the htp distribution, all methods perform similarly.

Figure 7 shows results with the LT model on facebook; myopic now stands
out. We also tried LT on twitter data, yet it was hard to raise the objective above
zero with a small budget, illustrating result dependence on the spread model.
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Fig. 7. Utility on Facebook, LT, ε = 0.01. Fig. 8. Choices of myopic and RR vs.
node centrality

To investigate why uplift performs better in certain situations, we study
how its selections relate to degree centrality. As Fig. 8 shows, after selecting
the node of largest degree, myopic prefers low-degree nodes, which tend to be
weakly connected. On the other hand, uplift selects nodes of evenly distributed
centrality, as it considers their influence on disadvantaged neighbors. Thereby,
uplift outperforms myopic on low budgets.

Fig. 9. Global welfare on spa0 and spa10 data, IC model, ε = 0.02.

Global Welfare. To better understand the ramifications of using fairness-
oriented algorithms on the tradeoff between individual fairness and total welfare,
we also test performance on the aggregate influence objective, i.e., on the original
Influence Maximizing (IM) problem. Figure 9 presents the results of our study
on the sum of influence probabilities using the IC model on the spa dataset.
With a fixed probability distribution xp (Fig. 9a, 9g), as with minimum proba-
bility, uplift variants outperform myopic until the budget gets too high. While
saturate may outperform others in global welfare, it performs poorly in MaxMin
Faireness (Fig. 3, Fig. 4) and, as we will see, in runtime (Fig. 14a). Addition-
ally, greedy outperforms uplift variants in the first 1%|V | and myopic in the
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first 10%|V |. With higher edge probabilities, the inflection point drops, following
the pattern observed with minimum probability. The inflection point is around
40%|V | with xp, and decreases to 30%|V | with tp (Fig. 9b, 9h), to 20%|V | with
htp (Fig. 9c, 9i) and idp (Fig. 9d, 9j). With uniform probability distribution np
(Fig. 9f, 9l), myopic outperform others.

Fig. 10. Global welfare on spa0 and spa10 data, LT model, ε = 0.02.

Figure 10 shows the corresponding results with the LT Model and budget
in 30%|V | − 40%|V |. Here, saturate maintains an advantage with every edge
distribution in lower budgets. With the xp distribution (Fig. 10a, 10g), super*
and myopic slightly underperform others in the 30%|V | range of budget. How-
ever, with the tp distribution (Fig. 10b, 10h), greedy and uplift outperform
myopic. In denser distributions, htp, hp, idp and np (Figs. 10c–10f and 10i–10l),
the inflection point drops to 10%|V |. upliftX did not finish within our 7-h time
limit in Fig. 10. However, in Fig. 10a, 10g, the pattern of upliftX follows uplift
variants.

Fig. 11. Global welfare on bitcoin alpha and otc data, IC model, ε = 0.01.

Figure 11 shows our results on the two bitcoin datasets, alpha and otc, with
the IC model and a budget of up to 3%|V | nodes. Here, uplift variants always
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outperform others. Figures 11a and 11c zoom in the performance of uplift
variants, myopic, and greedy. In this closer view, we see that uplift variants
outperform both myopic and greedy in this measure.

Figure 12 shows results with IC model on facebook. uplift-based algorithms
and myopic only outperform others in the first 20 nodes. Thereafter, uplift
variants and super outperform myopic in this undirected graph.

Fig. 12. Utility Sum, ε = 0.01. Fig. 13. Scalability, tp, ε = 0.01

Fig. 14. Runtime, IC model, ε = 0.01.

Runtime. We also evaluate runtime scalability. Figure 13 presents the scalabil-
ity of selecting 60%|V | as candidate nodes on data sets of different sizes with
both IC (13a) and LT (13b) models. Unsurprisingly, uplift and myopic out-
perform others. Figure 14 confirms that uplift spends slightly more time due
to searching reachable sets in the early stages compared to myopic. The running
time of super is slower than myopic and uplift but still linear. Figure 14a shows
results on spa10 data; saturate is most time-consuming, as it performs greedy
calls by binary search, while uplift variants and myopic run in linear time.
Other results in Fig. 14 show that, on large data, such as facebook, bitcoin, and
twitter, there is not a distinguishable difference between uplift and myopic,
in agreement with our complexity analysis in Sect. 3. On the other hand, the
runtime of upliftX is sensitive to the seed selection by uplift.
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Fig. 15. Effect of ε on spa0 tp in IC model

Tolerance ε. Lastly, we delve into the behavior vs. the tolerance variable ε,
examining different ε values on spa0 with tp probability distribution and k = 100.
Figure 15a shows the results. We obtain a peak at ε = 0.02. Figure 15b shows that
runtime stays stable for ε ≥ 0.02. Such ε values yield many selected nodes beyond
the disadvantaged ones and bring no improvement in results while expanding the
search space. We obtained similar peaks with other data.

5 Conclusion

We proposed a reachability-aware framework for fair influence maximization.
Our experimental study demonstrates that our strategies strike an attractive
balance between individual fairness and total expected welfare, especially in
low budget settings, and outperform past work in challenging real-world prob-
lem instances by up to a factor of 4 in terms of fairness, even while no algo-
rithm is universally superior across data, spread models, and probability dis-
tributions. When aiming to achieve fair influence, one should carefully consider
which method to use, taking into consideration the desirable tradeoff between
fairness and total welfare, as well as the data features. Our algorithms perform
best in networks where people are influenced only by trusting groups, especially
with the IC model, and present an advantage in overall welfare. Our hybrid
solution, super, has an advantage on the LT model in terms of both individual
fairness and global welfare. In the future, we aim to delve into adaptive seed
selection and explore more efficient and effective sampling approaches.
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